首页> 外文OA文献 >Extended Target Tracking with a Cardinalized Probability Hypothesis Density Filter
【2h】

Extended Target Tracking with a Cardinalized Probability Hypothesis Density Filter

机译:通过基数化的概率假设密度过滤器进行扩展的目标跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a cardinalized probability hypothesis density (CPHD) filter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) filter for such targets has already been derived by Mahler and a Gaussian mixture implementation has been proposed recently. This work relaxes the Poisson assumptions of the extended target PHD filter in target and measurement numbers to achieve better estimation performance. A Gaussian mixture implementation is described. The early results using real data from a laser sensor confirm that the sensitivity of the number of targets in the extended target PHD filter can be avoided with the added flexibility of the extended target CPHD filter.
机译:本文提出了针对扩展目标的基数化概率假设密度(CPHD)过滤器,该过滤器可以在每次扫描时进行多次测量。这种目标的概率假设密度(PHD)滤波器已经由马勒(Mahler)推导,最近提出了一种高斯混合实现方法。这项工作放宽了目标和测量数量中扩展目标PHD滤波器的Poisson假设,以实现更好的估计性能。描述了高斯混合实现。使用来自激光传感器的真实数据的早期结果证实,扩展目标CPHD滤波器具有更大的灵活性,可以避免扩展目标PHD滤波器中目标数量的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号